
Multi-class batch-mode active learning for image classification

Ajay J. Joshi† , Fatih Porikli∗, and Nikolaos Papanikolopoulos†
†University of Minnesota, Twin Cities ∗Mitsubishi Electric Research Labs

Abstract— Accurate image classification is crucial in many
robotics and surveillance applications – for example, a vision
system on a robot needs to accurately recognize the objects
seen by its camera. Object recognition systems typically need
a large amount of training data for satisfactory performance.
The problem is particularly acute when many object categories
are present. In this paper we present a batch-mode active
learning framework for multi-class image classification systems.
In active learning, images are to be chosen for interactive
labeling, instead of passively accepting training data. Our
framework addresses two important issues: i) it handles
redundancy between different images which is crucial when
batch-mode selection is performed; and ii) we pose batch-
selection as a submodular function optimization problem that
makes an inherently intractable problem efficient to solve, while
having approximation guarantees. We show results on image
classification data in which our approach substantially reduces
the amount of training required over the baseline.

I. INTRODUCTION

In this paper, we focus on the problem of object
recognition and image classification in real-world problems.
For example, consider a robot traversing through an
environment in which it continuously encounters new
objects. The recognition system has to deal with large
variation in illumination, apparent object sizes, different
viewpoints, etc. In order to deal with such large variation, a
large and diverse training set is typically required for accurate
recognition. The diversity in training is essential to handle
variation in object appearance. For instance, a car seen from
the side and rear appears very different. As such, obtaining
enough human training on diverse images is one of the most
difficult aspects in designing learning systems.

In computer vision applications, large training sets are
employed to obtain the required diversity in image views.
For example, a robot can be used to collect images of an
object from all directions and build a model for recognition.
However, this approach might not be feasible in the general
setting - where mobility is not available, or where only
images can be obtained from a database. In contrast, we
explicitly enforce diversity in the training set, by utilizing a
batch-mode setup.

In image classification problems, large amounts of
human labeled training data are required for satisfactory
performance. Therefore, human input often forms the
primary bottleneck in achieving good generalization. Active
learning attempts to reduce the human effort required in
learning good object models thorough intelligent example
selection mechanisms. Theoretical results show that in many
problems, such active selection methods can substantially
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Fig. 1. Batch-mode selection model proposed in this paper. Note the
absence of the feedback loop in batch-mode selection – this avoids multiple
retraining of the classifier and provides easier user interaction. However,
batch selection needs to explicitly handle example redundancy while being
computationally tractable – our paper addresses these problems.

reduce the amount of training required to achieve a certain
classification rate [2], [7], [10].

Our goal is to focus on active selection in large, multi-
class problems that are typical in real-world classification
scenarios. Typically, the process of active example selection
has been iterative – the classifier queries for labels on certain
examples which the human provides, followed by a step
of classifier retraining. Such interaction is problematic on
two fronts: i) training a classifier at each iteration or round
poses computational challenges, especially for classifiers that
cannot be trained incrementally; and ii) since the human
has to input new labels at each round, the process can be
cumbersome, indicating interactive inefficiency.

Most work on active learning in binary problems [4], [17],
[25] as well as in multi-class classification [14]–[16], [24]
has focused on single return or iterative active learning.
In [26], the authors employ user inputs at multiple levels
of granularity, also referred to as multi-level annotations.
Holub et al. [13] propose entropy-based active learning that
can handle batch-mode selection in principle, however, the
approach is prohibitively expensive in practice. Recently
a few researchers have proposed batch-mode selection
algorithms [3], [12], however these are restricted to only
binary classification. Efficient batch-mode selection is vitally
important in large multi-class classification problems in
order to make the methods practically appealing and
computationally feasible.

Motivated by the described problems, we propose the first
efficient multi-class batch-mode active selection framework
in this paper. Using the proposed framework, multiple
examples can be queried actively in a batch, thereby
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minimizing classifier training time while allowing easy user
interaction. Figure 1 shows the batch-mode active selection
model we propose.

The learning setup and terminology used are as follows.
We assume that a very small set of labeled examples (seed
set) are used for initial training of the classifiers. Support
Vector Machines (SVM) are used as the base binary classifier
in this work, since they provide the best results on our
datasets. The active pool is a large set of unlabeled examples
from which the selection algorithm can select examples to
query the user for class labels. The evaluation is performed
on a separate test set.

II. CHALLENGES IN BATCH-MODE SELECTION

Actively selecting a single example for human labeling
(single-return) requires a selection measure for querying
useful examples at each iteration. By appending the newly
labeled example to the training set, a new classifier can be
trained for the next iteration. The active selection measure
needs to be computed at every iteration since it depends
on the current trained classifier. This implicitly minimizes
redundancy in the queried examples, since if the classifier is
confident on certain examples, they are not queried on future
rounds. In batch-mode selection, the redundancy between
examples needs to be accounted for explicitly. The primary
challenges therefore are the following:

• Along with a measure of ‘usefulness’ of examples
for active selection, we need a criterion to evaluate
redundancy of examples - either explicitly through
a set redundancy function, or through information
theoretic measures. Finding a measure for example
redundancy is especially hard in multi-class problems,
since redundancy depends heavily on the classifiers
employed, the feature space, and class populations
among others. It is thus not straightforward to generalize
measures of example redundancy from binary to multi-
class classification.

• Even if we have redundancy measures, batch-
mode selection poses a big computational bottleneck.
Consider that we need to select a batch of size p from
an unlabeled data pool of size n. The number of possible
batches that can be selected is nCp. n and p are typically
large – we therefore run into intractable subset selection
problems.

In this paper, we first propose an active selection
framework that explicitly accounts for example redundancies
in multi-class problems. We then devise an active selection
function and prove that it is submodular. Exploiting ideas
from submodular function optimization [21], we overcome
the computational challenge described above; we propose a
greedy algorithm for selecting a batch of examples actively –
the algorithm is efficient and also guarantees a near-optimal
solution. Finally, we give three new example redundancy
measures for multi-class problems that can be used within
our framework. Our work thus generalizes batch-mode active
selection to multi-class classification.

III. ACTIVE SELECTION FRAMEWORK

In this section we describe our multi-class active learning
framework for batch-mode example selection.

A. Overall strategy

Our framework relies on measures of utility and
redundancy of examples. Roughly, utility corresponds to
the benefit associated with choosing individual examples
for active selection, in terms of the potential improvement
in classification accuracy. For instance, uncertainty in
classification of an unlabeled example could be used as
its utility measure. Further, we define a measure of utility
of a batch of examples as the sum of their individual
utilities, where redundancy is ignored. For a set of examples
S = {h1, . . . , hn}, denote their utility score by U(S).
If the individual example utilities are denoted by V, then
U(S) =

∑n
i V(hi). Without loss of generality, we enforce

the constraint V ∈ [δ, 1] on the utility score range. 1 indicates
maximum utility while δ > 0 indicates a minimum – the
rationale for keeping it above zero is that no utility measure
can guarantee a zero utility for any example without knowing
its true class label.

Next, we require a redundancy measure for a set of
examples that captures their redundancy from a classification
standpoint. For instance, consider unlabeled examples each
having a high utility score. Even though each of the
examples individually are expected to be very useful for
active selection, they might contain the same information,
i.e., selecting one example for training the classifier might
make the other examples redundant. We need to explicitly
account for such example redundancies in batch selection.
For a set S of examples, we denote their redundancy score
by R(S).

We employ a quality measure of a set of examples, denoted
by Q(·) that takes into account the utility and redundancy
of examples

Q(S) = U(S)−R(S). (1)

We further define Q(φ) = 0. The quality measure aims
to capture the overall quality of a batch of examples
for active selection, in terms of potential improvement in
classification accuracy. Intuitively, diverse (non-redundant)
sets of examples that are maximally informative will have a
higher quality score.

B. The redundancy matrix

We consider that the redundancy score of a set is
composed of pairwise “interference” scores between each
pair of examples that the set consists of. Denote the pairwise
interference score between examples hi and hj as I(hi, hj).
Without loss of generality, we assume I ∈ [0, 1]. In our
framework, we employ these pairwise interference scores
scaled appropriately, as elements of the redundancy matrix
M(S) ∈ Rnxn.

The matrix M can be interpreted as follows. Each row in
the matrix represents the interference caused by one example
with each of the other examples in the set. In order to achieve
correct scaling for the interference, we scale the ith row of
the matrix by the utility value V(hi) of the corresponding
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example. Therefore, the element in ith row and jth column
of the matrix can be written as

Mij = p ·V(hi) · I(hi, hj) · I(i 6= j), (2)

where p is a constant scaling factor. The last term above is
an indicator function, which evaluates to 0 if i = j and is
unity otherwise. In essence, it sets the diagonal elements to
zero and thus removes the influence of self-interference from
the matrix. The scaling by V(hi) achieves reasonable values
of redundancy for an example having a certain utility – in
a sense, it performs normalization for the quality function.
As will be seen in Proposition 2, the scaling is crucial for
having a non-decreasing function Q – since Q measures the
overall quality of a set from a classification standpoint, the
non-decreasing property is desirable. It captures the fact that
more training examples are desirable for classification. We
now define the redundancy score of the set as the squared
Frobenius norm of the matrix M,

R(S) = ‖M(S)‖2F. (3)

C. Selection measure and submodularity

Consider a finite set U and a function F : U → R. F is a
submodular set function [18], [21] for all A ⊆ B ⊆ U ,K 6∈
B if the following holds.

F satisfies a diminishing returns property such that
F(A∪ {K})−F(A) ≥ F(B ∪ {K})−F(B). In other
words adding an element to a set increases the function
value by at least as much as adding the element to its
superset. This property is fairly intuitive and is satisfied
by information theoretic measures such as entropy,
and information gain (under conditional independence
assumptions) [19].

In real problems that typically have high dimensions,
real-valued attributes, and in some cases non-vectorial
representations, measures such as mutual information (for
redundancy) are hard to estimate accurately [9]. In contrast,
the quality measure Q defined previously is very easy to
compute and is the fundamental active selection measure we
employ in this paper. Here, we prove that the set function Q
is actually submodular, irrespective of the specific functions
V and I employed.

Proposition 1: Q, as defined in Equation (1) is a
submodular set function.

Proof: Consider sets of examples S1 and S2 such that
S1 ⊆ S2, and an example x 6∈ S2. In order for Q to satisfy
the property for submodularity above, we need to show that

Q(S2 ∪ {x})−Q(S2) ≤ Q(S1 ∪ {x})−Q(S1).

Now using the definition of Q from Equation (1) and
expressing S2 = S1 ∪∆S, we need to show that

R(S1 ∪∆S ∪ {x})−R(S1 ∪∆S) ≥ R(S1 ∪ {x})−R(S1). (4)

The above means that adding an element to a set should not
increase the redundancy score more than adding the same
element to a superset.

If S1 has n1 elements and S2 has n2 ≥ n1 elements,

R(S1 ∪ ∆S ∪ {x})−R(S1 ∪∆S)

=

n2X
i,j=1,i 6=j

|p ·V(hi) · I(hi, hj)|2

= R(S1 ∪ {x})−R(S1)

+

n2X
i,j=n1+1,i6=j

|p ·V(hi) · I(hi, hj)|2

≥ R(S1 ∪ {x})−R(S1).

This proves the correctness of Equation (4), and thereby
shows that Q is submodular.

Proposition 2: Q is a monotonically non-decreasing
function for I ∈ [0, 1], and p2 ≤ 1

n(1+1/δ) , where n is the
size of the largest set chosen for active selection.

Proof: Now consider a set S = {h1, . . . , hn} which
consists of n examples, and an example x 6∈ S . The
difference in the redundancy scores R(S ∪ {x}) − R(S)
can be computed using the respective redundancy matrices.

R(S ∪ {x})−R(S) =

nX
i=1

|p ·V(hi) · I(hi, hj)|2

+

nX
j=1

|p ·V(x) · I(hj , x)|2. (5)

Since the maximum value of V and I is 1 each, the
maximum value of the above difference can be obtained as

R(S ∪ {x})−R(S) ≤ np2 + np2V(x)

= np2(V(x) + 1) ≤ V(x). (6)

The last inequality follows from the upper bound on p2 and
since δ < 1. Using the above, and the fact that U(S ∪{x}) =
U(S) + V(x), we now have

U(S ∪ {x})−R(S ∪ {x}) ≥ U(S)−R(S), (7)

which implies that Q(S ∪ {x}) ≥ Q(S) by definition.
In other words, the quality function adheres to the intuitively
appealing ‘information never hurts’ principle [6].

D. Performance guarantees

Denote the unlabeled pool by U and suppose we want
to chose a batch of k examples from the pool. In optimal
batch-mode selection, our goal is to select a batch of size k,
denoted by Aopt that maximizes the quality function Q

Aopt = argmax
|A|=k

Q(A). (8)

The above problem of maximizing a submodular function
is NP-hard in general [18]. However, Nemhauser et al. [21]
show that for a submodular non-decreasing function F with
F(φ) = 0, a greedy algorithm gives a solution with a value
bounded close to the optimal. The basic idea is to iteratively
select an element that maximizes the incremental increase in
value of the function. Denote the set obtained by the greedy
algorithm as Ag . It is shown in [21] that such a greedy
algorithm gives the following bound: F(Ag)/F(Aopt) ≥
(e− 1)/e.
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Input: Unlabeled data pool U , R, U, and k

1. A := {φ}, the current batch of examples;
2. for i := 1 to k, do
3. foreach element hj ∈ U\A, do
4. Aj := A ∪ {hj};
5. Compute Qj = U(Aj)−R(Aj);
6. end
7. select the example giving the highest

improvement: b = argmaxj Qj ;
8. A := A ∪ {hb};
9. end
10. return A.

Output: The actively selected batch A, |A| = k.

Fig. 2. A greedy batch-mode active selection algorithm.

E. A greedy algorithm
Based on the above, we propose a greedy batch-mode

active selection algorithm in Figure 2.
Theorem 1: The selected batch of examples A output by

the algorithm described in Figure 2 is near-optimal for the
given set quality function Q. Precisely, it satisfies the bound
Q(A)/Q(Aopt) ≥ (e − 1)/e, where Aopt is as defined in
Equation (8).

Proof: The proof follows from Propositions 1 and 2
above, the fact that Q(φ) = 0, and the approximation result
given by Proposition 4.3 in Nemhauser et al. [21].
Therefore, the proposed algorithm is computationally
inexpensive and at the same time gives a solution that is
guaranteed close to optimal for a given quality function Q.

If at any iteration in the above algorithm, no quality
improvement is obtained (line 7), Proposition 4.2 in [21]
implies that the chosen set A is actually optimal. In such
a case when none of the examples in U\A give a positive
improvement in the quality function, the algorithm can be
terminated, while guaranteeing optimality.

IV. MULTI-CLASS REDUNDANCY MEASURE

In this section, we propose three probabilistic multi-class
redundancy measures. Specifically, our goal is to define
an ‘interference’ function I employed previously that is
easy to compute, and captures possible redundancies for
the classifier. For instance, if two unlabeled examples carry
the same information, they should have a high interference
score. Apart from the batch selection framework above, we
note that the aspect of multi-class redundancy is also new
in our work – we are not aware of any multi-class batch-
mode selection methods, and thus any measures of example
redundancy for multi-class problems. We show here that
such interference measures can be obtained with simple
computations, and they give good results in practice.

Jain and Kapoor [14] note the important problem that it
is difficult to compare uncertainty of binary subproblems in
multi-class classification. In this paper, we use the one-vs-
one method for multi-class classification, wherein a classifier
is trained for each pair of classes. In order to compare

uncertainty across binary subproblems, all the measures
we propose are probabilistic, i.e., they rely on estimated
class membership probabilities of unlabeled examples in the
active pool. Probabilistic measures aid in coming up with
comparable measures of uncertainty and redundancy across
binary subproblems. The following section describes a way
in which probabilities for unlabeled data can be estimated.

Probability estimates

For margin-based classifiers such as SVM, we require
a way of estimating class membership probabilities from
the margin of the unlabeled examples. We employ the 2-
step approach proposed by Joshi et al. [15]. In the first
step, binary probability values of class membership are
estimated for all the binary subproblems. This estimation is
performed using sigmoid function fitting on the margins of
unlabeled examples [20], [23]. Once binary probabilities are
estimated, multi-class estimation is performed by combining
the binary estimates. The method of pairwise coupling
[11], [27] is used to couple the binary estimates and infer
a multi-class membership distribution. Such an estimation
approach is computationally efficient and generalizes well to
problems having many categories [15]. For implementation,
the LIBSVM [5] toolbox is employed.

We are now ready to describe the proposed intersection
functions. Note that I needs to be in the range [0, 1] as
defined in Section III-A above.

A. Jensen-Shannon divergence
Jensen-Shannon divergence (JSD) is a popular measure

of similarity between two probability distributions. JSD is
based on the Kullback-Leibler (KL) divergence, with the
notable exceptions that JSD is finite and symmetric. If P
and Q are two probability distributions,

JSD(P‖Q) =
1

2
KL(P‖M) +

1

2
KL(Q‖M), (9)

where M = (P +Q)/2. We employ JSD as one measure
of interference between two examples I.

B. Histogram intersection

Histogram intersection is a measure of similarity between
two histograms or discrete probability densities. For
distributions P and Q, it is defined as

I(P,Q) =
∑
i

min(Pi, Qi). (10)

C. Classifiers in contention

For multi-class problems, a concept referred to as
“classifiers in contention” (the classifiers most likely to be
affected by choosing an example for active learning) is
introduced in [15]. This concept can also be employed for
forming an interference measure – if two examples are likely
to affect two different classifiers, they likely carry different
information and are not redundant. Through this idea, we can
capture the potential redundancies in multi-class problems,
which is much more challenging that redundancy estimation
in binary classification.

We now define the interference function for two
distributions P and Q in the following. Denote the top two
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Fig. 3. Batch-mode active selection v/s random batch selection on different datasets: (a) USPS, (b) Pendigits, (c) Scene-13. Redundancy measures used
– Contention: Classifiers in contention, Hist Int: Histogram intersection, JSD: Jensen-Shannon divergence. Similar results observed on other datasets also.

classes with highest probability values for the distributions
P and Q to be c1(P ), c2(P ) and c1(Q), c2(Q) respectively.

I(P, Q) = 1, if c1(P ) = c1(Q), and c2(P ) = c2(Q).

= 0.1, if c1(P ) = c1(Q), and c2(P ) 6= c2(Q).

= 0, if c1(P ) 6= c1(Q).

The above implies the highest interference score for
examples that have the exact same classifier in contention.
On the other hand, for examples that are likely to belong to
different categories, the interference score is zero.

Utility measure

Apart from the redundancy measure described above, we
also require a multi-class utility measure for selecting useful
examples. We choose the probabilistic measure proposed
in [15], and shown to be effective for problems having
a large number of categories. The selection measure is
the difference between the probability values of the top
two classes obtained from the estimated distribution, or
(c1(P ) − c2(P )) in the above notation. The smaller the
difference, the larger is the uncertainty, indicating a good
candidate for active selection. We now define V(P ) =
max(δ, 1− (c1(P )− c2(P ))). Therefore, larger values of V
imply greater uncertainty – also a lower limit δ is imposed
for highly peaked distributions with little uncertainty, so that
V ∈ [δ, 1]. We choose δ = 0.1 for all the experiments.

V. EXPERIMENTS

This section demonstrates the strength of our batch-mode
selection algorithm on real-world data. We show results
using the 3 different redundancy measures proposed, and
compare it with random selection. Further, we also compare
the results with “naive batch-mode selection”: or selecting a
batch by choosing the most informative examples based on
their utility score only (the examples are sorted according
to their utility score and then the top examples are chosen,
without considering redundancy). In all experiments, we
fix the scaling parameter p = 0.02, so that the bound
on p2 in Proposition 2 is satisfied. We use many multi-
class image datasets for our experiments – Abalone, USPS,
Pendigits, Image segmentation, and Letter datasets from
the UCI repository [1], and a dataset of images from 13
natural scene categories [8] (scene-13). For scene-13, we
use GIST features of Oliva and Torralba [22], since GIST

shows good discriminatory power. The datasets we use are
typically used for evaluating image classification systems
since the they are collected from real sources having noise,
have many categories, and also have many examples for
testing efficiency of the algorithms.

A. Classification rate

In this section, we compare the classification rate
of different active learning schemes. Figure 31 shows
classification accuracy results (with 1-standard deviation
bars) on USPS, Pendigits, and Scene-13 dataset. We can see
that on the USPS and Pendigits datasets, all the redundancy
measures outperform random selection significantly, showing
that even in multi-class batch-mode selection, a lot of
annotation effort can be reduced by the proposed algorithm.
On the Scene-13 dataset, JSD and Histogram intersection
perform poorly, giving accuracy values similar to random
example selection. However, the method using classifiers in
contention beats all other methods by a large margin. The
result indicates that capturing redundancy is crucial to good
performance. In this case, the ‘contention’ method looks
greedily for distributions that peak at the same categories,
while ‘JSD’ and ‘histogram intersection’ look at the entire
distributions, and therefore fail to capture the corresponding
example redundancies.

60 65 70 75 80 85
43

44

45

46

47

48

49

50

Batch size

C
la

ss
if
ic

a
ti
o
n
 a

cc
u
ra

cy
 (
%

)

Letter dataset - 26 categories

 

 Contention

Naive

Hist Int

JSD

40 60 80 70 80 90 100
74

76

78

80

82

84

86

88

Batch size

C
la
ss
if
ic
a
ti
o
n
 a
cc
u
ra
cy
 (
%
)

Image segmentation dataset

 

 

Contention

Naive

Hist Int

JSD

(a) (b)

Fig. 4. Classification accuracy comparisons with naive batch selection on
(a) ‘Letter’, (b) ‘Image segmentation’ datasets.

B. Comparisons with naive batch-mode selection
Here, we evaluate the methods on another important aspect

– comparisons with naive batch selection. Note that naive
selection also uses an active selection measure – thus the
baseline is much stronger, and for outperforming naive

1Figures best viewed in color.
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Fig. 5. Our method scales much better than the baseline in training time.

selection it is essential to capture example redundancies
appropriately. Figure 4 shows results on the ‘Letter’ and
‘Image segmentation’ datasets that have 26 and 7 categories
respectively. Plots in 4(a) and 4(b) show that all the
interference functions outperform naive batch selection on
both datasets. We observed similar behavior with other
datasets also, and representative cases are shown due to space
constraints. The experiment demonstrates that accounting
for example redundancies is critical in real problems, and
naively selecting the most informative individual examples
gives poor results.

Note here that the interference measures we employ are
at best simplistic – they are not problem specific and rely
only on estimated class membership distributions. In a sense,
this shows the potential of the proposed framework. The
framework is generic and can accommodate other measures
of utility and redundancy that capture the problem structure
better. We believe that more advanced interference measures
can make a big difference in the classification rate – it is our
hope that further research is pursued in this direction based
on the promising results shown.
C. Computational advantages

One of the primary motivations of batch-mode selection
is to reduce the amount of computation involved – iterative
active learning involves classifier retraining and probability
estimation at each round of learning. Figure 5 demonstrates
the time required for active example selection in both
iterative and batch-mode settings on various datasets. Batch-
mode selection is an order of magnitude faster, and also
scales better as seen in Figure 5(b). Further note that
labeling examples in batches is also much easier from a user
interaction standpoint, making it appealing in practice. In
summary, batch-mode selection is both computationally and
interactively efficient, and thus extremely useful for large
real-world applications.

VI. CONCLUSION

In this paper, we address the problem of batch-mode
selection in multi-class problems. We demonstrate an
efficient generic framework and give associated performance
guarantees. We also propose ways to measure redundancy in
batches of examples. The experiments show the importance
of accounting for example redundancies, the improvement
in classification rate achieved by the proposed framework,
and significant computational savings. Measures that better
capture redundancy and utility in example batches promise to
improve the results even further. This will be one important
direction for future work.
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